q-boson realization of quadratic algebra A_{1} and its representations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L1233
(http://iopscience.iop.org/0305-4470/25/22/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:31

Please note that terms and conditions apply.

LETTER TO THE EDITOR

q-boson realization of quadratic algebra \mathscr{A}_{1} and its representations

Hong-Chen Fu $\dagger \ddagger$ and Mo-Lin Ge \dagger
\dagger Theoretical Physics Divison, Nankai Institute of Mathematics, Tianjin 300071, People's Republic of China
\ddagger Department of Physics, Northeast Normal University, Changchun 130024, People's Republic of China

Received 23 September 1992

Abstract

The non-generic central elements of the quadratic algebra \mathscr{A}_{1} associated with the quantum group $\mathrm{GL}(2)_{q}$ are found in the case where q is a root of unity. A q-boson realization of \mathscr{A}_{1} is constructed. In terms of the q-boson realization the representations of \mathscr{A}_{1} on the q-Fock space are studied in both generic and non-generic cases and the cyclic representation is obtained in the non-generic case.

Reflection equations and their related quadratic algebras were introduced in [1] as an equation describing factoring scattering on a half-line. Recently they have found different applications, to the quantum current algebras [2], and to the integrable modules with non-periodic boundary conditions [3,4]. Kulish et al studied the properties of the quadratic algebras [5] (including some representations) and constructed the constant solutions of the reflection equations [6].

The q-boson realization theory is a powerful tool for studying the representations of quantum algebras [7], quantum superalgebras [8], and quantum matrix-element algebras of the quantum groups [9]. We naturally expect to apply this method to the study of the representations of the quadratic algebras. This letter is devoted to the q-boson realization of quadratic algebras \mathscr{A}_{1} (in Kulish's notation) associated with $\mathrm{GL}(2)_{q}$ and its representations. The q-Fock representations both in generic and nongeneric cases and the cyclic representations in non-generic cases are all considered.

Throughout this letter the term 'generic' means that the deformation parameter q is not a root of unity, and 'non-generic' means that q is the primitive p th root of unity, i.e. $q^{p}=1$, and $p \geqslant 3$ is an odd positive integer. We denote by Z^{+}the set of all non-negative integers and by C the complex number field. We also use the abbreviations $C^{\times}=C \backslash\{0\}$ and $[x]=\left(q^{x}-q^{-x}\right) /\left(q-q^{-1}\right)$ for an operator x or a complex number x.

Quadratic algebra $\mathscr{A}(R)$ was specified from the reflection equation without spectral parameters

$$
\begin{equation*}
R K^{1} R^{t_{1}} K^{2}=K^{2} R^{t_{1}} K^{1} R \tag{1}
\end{equation*}
$$

where K is a square matrix and $K^{1}=K \otimes \mathrm{id}, K^{2}=\mathrm{id} \otimes K^{3}$. Quadratic algebras are generated by the non-commuting matrix elements $k_{i j}$ of K. This algebra is closely related to the quantum group $\mathrm{A}(R)$ generated by the matrix elements $t_{i j}$ of T satisfying

$$
\begin{equation*}
R^{1} T^{2}=\frac{2}{T} T R \tag{2}
\end{equation*}
$$

It is an $\mathrm{A}(R)$-comodule-algebra, i.e. there exists an algebra homomorphism $\varphi: \mathscr{A}(R) \rightarrow$ $A(R) \otimes \mathscr{A}(R)$ such that

$$
\begin{equation*}
(\Delta \otimes \mathrm{id}) \circ \varphi=(\mathrm{id} \otimes \varphi) \circ \varphi \quad(\varepsilon \otimes \mathrm{id}) \circ \varphi=\mathrm{id} \tag{3}
\end{equation*}
$$

where Δ and ε are the comultiplication and the co-unit of $\mathrm{A}(R)$ respectively. In fact φ is explicitly defined by

$$
\begin{equation*}
\varphi(K)=T K T^{\prime} \quad(\varphi(K))_{i j}=\sum_{m, n} t_{i m} t_{j n} k_{m n} \tag{4}
\end{equation*}
$$

provided $\left[t_{i j}, k_{m n}\right]=0$. This property implies that, if K is a solution of equation (), then $\varphi(K)$ is also a solution.

In this letter we only study an explicit example \mathscr{A}_{1} associated with quantum group $\mathrm{GL}(2)_{q}$. In this case

$$
R=\left[\begin{array}{llll}
q & & & \tag{5}\\
& 1 & & \\
& \omega & 1 & \\
& & & q
\end{array}\right]
$$

where $\omega=q-q^{-1}$. Letting

$$
K=\left[\begin{array}{ll}
\alpha & \beta \tag{6}\\
\gamma & \delta
\end{array}\right]
$$

we get the defining relations of \mathscr{A}_{1}

$$
\begin{array}{lrrr}
{[\alpha, \beta]} & =\omega \alpha \gamma & \alpha \gamma & =q^{2} \gamma \alpha \\
{[\beta, \gamma]=0} & {[\beta, \delta]} & =\omega \gamma \delta & {[\alpha, \delta]=\omega(q \beta+\gamma) \gamma} \tag{7}\\
& \gamma \delta=q^{2} \delta \gamma .
\end{array}
$$

This algebra has two central elements

$$
\begin{equation*}
C_{1}=\beta-q \gamma \quad C_{2}=\alpha \delta-q^{2} \beta \gamma . \tag{8}
\end{equation*}
$$

For the non-generic case we can also prove the following proposition.
Proposition 1. If $q^{p}=1$, then $\alpha^{p}, \gamma^{p}, \delta^{p}$ are all the central elements of \mathscr{A}_{1}.
This proposition can be proved from the defining relations (7) and the following equations

$$
\begin{align*}
& {\left[\alpha, \delta^{m}\right]=\omega[m] \delta^{m-1}\left(q^{m} \beta+\left(q^{3 m-1}-q^{m} \omega\right) \gamma\right) \gamma} \\
& {\left[\beta, \delta^{m}\right]=q^{-(m-1)}[m] \omega \gamma \delta^{m}} \\
& {\left[\alpha^{m}, \delta\right]=\omega \alpha^{m-1}[m]\left(q^{-m+2} \beta+q^{-3 m+3} \gamma\right) \gamma} \tag{9}\\
& {\left[\alpha^{m}, \beta\right]=q^{-(m-1)}[m] \omega \alpha^{m} \gamma .}
\end{align*}
$$

We note that, if p is even, then $\gamma^{p / 2}$ is the central element. It is also worth noting that β^{p} is not the non-generic central element. For example, when $p=3$, we find that

$$
\begin{equation*}
\left[\alpha, \beta^{3}\right]=3 \omega \beta^{2} \alpha \gamma+3 \omega^{2} \beta \alpha \gamma^{2}+\omega^{3} \alpha \gamma^{3} \neq 0 . \tag{10}
\end{equation*}
$$

This is explained in greater detail as follows. In quantum algebras, there are two kinds of Cartan generators: one kind is H_{i}, having the property $\left[H_{i}, X_{j}^{ \pm}\right]= \pm A_{i j} X_{j}^{ \pm}$; another kind is $k_{i} \equiv q^{H_{i}}$ satisfying the relations $k_{i} X_{j}^{ \pm}=q^{ \pm A_{i j}} X_{j}^{ \pm} k_{i}$. An important difference
between the two kinds of Cartan generators is that, in the non-generic case, k_{i}^{p} are the central elements, while H_{i}^{p} are not. From the defining relations (7) one finds that β is H_{i}-like and γ is k_{i}-like; therefore, γ^{p} are the central elements while β^{p} are not. This fact can also be seen from the q-boson realization constructed later.

We now construct the q-boson realization of \mathscr{A}_{1}. Define

$$
\begin{array}{lr}
\delta=b^{+} & \beta=\lambda+\omega \mu[N] q^{N+1} \\
\gamma=\mu q^{2 N} & \alpha=\omega \mu\left(q^{N+1} \lambda+\left(q^{3 N+2}-q^{N+1} \omega\right) \mu\right) b \tag{11}
\end{array}
$$

where the q-boson operators $b^{+}, b, q^{ \pm N}$ satisfy the following well known relations [7]

$$
\begin{equation*}
b b^{+}-q^{\mp 1} b^{+} b=q^{ \pm N} \quad q^{N} b^{+} q^{-N}=q b^{+} \quad q^{N} b q^{-N}=q^{-1} b . \tag{12}
\end{equation*}
$$

One can verify that these operators indeed satisfy the defining relations (7) of the quadratic algebra \mathscr{A}_{1}, and therefore equations (11) give a q-boson realization of \mathscr{A}_{1}.

One can also verify that, in the q-boson realization (11), the central elements C_{1}, C_{2} take the constants

$$
\begin{equation*}
C_{1}=\lambda-q \mu \quad C_{2}=\mu(-\lambda+\omega \mu) \tag{13}
\end{equation*}
$$

We turn to the representation of the \mathscr{A}_{1} on the q-Fock space \mathscr{F} spanned by

$$
\begin{equation*}
\left.\left\{|m\rangle=\left(b^{+}\right)^{m}|0\rangle|b| 0\right\rangle=0, q^{ \pm N}|0\rangle=|0\rangle, m \in Z^{+}\right\} \tag{14}
\end{equation*}
$$

From the representations of \boldsymbol{q}-boson algebra on \mathscr{F}

$$
\begin{align*}
& b^{+}|m\rangle=|m+1\rangle \\
& b|m\rangle=[m]|m-1\rangle \tag{15}\\
& q^{ \pm N}|m\rangle=q^{ \pm m}|m\rangle
\end{align*}
$$

we obtain the q-Fock representation of \mathscr{A}_{1}

$$
\begin{align*}
\delta|m\rangle & =|m+1\rangle \\
\beta|m\rangle & =\left(\lambda+q^{m+1}[m] \omega \mu\right)|m\rangle \\
\gamma|m\rangle & =\mu q^{2 m}|m\rangle \tag{16}\\
\alpha|m\rangle & =\omega[m] \mu\left(q^{m} \lambda+\left(q^{3 m-1}-q^{m} \omega\right) \mu\right)|m-1\rangle
\end{align*}
$$

Let us analyse this representation in different cases.
Case 1: $\mu=0$. In this case the representation becomes

$$
\begin{align*}
\delta|m\rangle & =|m+1\rangle \\
\beta|m\rangle & =\lambda|m\rangle \tag{17}\\
\gamma|m\rangle & =\alpha|m\rangle=0 .
\end{align*}
$$

It is easy to see that there exists the following invariant subspace chain

$$
\begin{equation*}
\mathscr{F} \equiv V(0) \supset V(1) \supset V(2) \supset \ldots \tag{18}
\end{equation*}
$$

where the invariant subspace $V(M), M \in Z^{+}$, is spanned by

$$
\begin{equation*}
V(M):\{|m\rangle \mid m \geqslant M\} . \tag{19}
\end{equation*}
$$

It is not difficult to probe that for the subspace $V(M+1)$ of $V(M)$ there exists no invariant complementary space. Thus the representation on every $V(M)$ is an infinitedimensional indecomposable representation.

On the quotient space $V(M, K)=V(M) / V(M+K), K=1,2, \ldots$, one can obtain the finite-dimensional representations, which are one-dimensional irreducible representations if $K=1$, and K-dimensional indecomposable ones if $K \geqslant 2$. The onedimensional representation reads

$$
\begin{equation*}
\alpha=\gamma=\delta=0 \quad \beta=\lambda \tag{20}
\end{equation*}
$$

Case 2: $\mu \neq 0$ and $\lambda \neq\left(\omega-q^{2 \Lambda-1}\right) \mu$ for any $\Lambda \in Z^{+}$. In this case it is easy to prove that equation (16) defines an infinite-dimensional irreducible representation in the generic case. If $q^{p}=1$, there exists the following invariant subspace chain

$$
\begin{equation*}
\mathscr{F} \equiv W(0) \supset W(p) \supset W(2 p) \supset \ldots \tag{21}
\end{equation*}
$$

where the invariant subspaces $W(R p), R \in Z^{+}$, are spanned by

$$
\begin{equation*}
W(R p):\{\mid m) \mid m \geqslant R p\} \quad R \in Z^{+} \tag{22}
\end{equation*}
$$

for which no invariant complementary space exists. Therefore the representations on \mathscr{F} and on $W(R p)$ are all the infinite-dimensional indecomposable representations.

From the chain (21) we can also construct the finite-dimensional representations on the quotient spaces $W(R, S) \equiv W(R) / W(R+S), S=1,2, \ldots$, which are spanned by

$$
\begin{align*}
& W(R, S):\{|\bar{m}\rangle \equiv|m\rangle \bmod W(R+S) \mid R p \leqslant m \leqslant(R+S) p-1\} \\
& \operatorname{dim} W(R, S)=S p \tag{23}
\end{align*}
$$

These finite-dimensional representations are indecomposable in the case $S \geqslant 2$ and irreducible in the case $S=1$.
Case 3: $\mu \neq 0$ and $\lambda=\left(\omega-q^{3 \Lambda-1}\right) \mu$ for given $\Lambda \in Z^{+}$. We first consider the generic case. In this case there exists an invariant subspace $F(\Lambda)$ spanned by

$$
\begin{equation*}
F(\Delta):\{|m\rangle \mid m \geqslant \Lambda\} \tag{24}
\end{equation*}
$$

for which no invariant complementary space exists. Therefore the representation on \mathscr{F} is indecomposable.

On the quotient space $\mathscr{F} / F(\Delta)$ with basis

$$
\begin{align*}
& \{|m\rangle \bar{m} \equiv|m\rangle \bmod F(\Lambda) \mid 0 \leqslant m \leqslant \Lambda-1\} \\
& \operatorname{dim} F(\Lambda)=\Lambda \tag{25}
\end{align*}
$$

we obtain a Λ-dimensional irreducible representation. In particular, when $\Lambda=1$, we obtain the well known one-dimensional representation (up to the constant μ)

$$
\begin{equation*}
\alpha=\delta=0 \quad \beta=1 \quad \gamma=-q . \tag{26}
\end{equation*}
$$

Next we discuss the non-generic case. In this case there exists the invariant subspace chain (21) and the invariant subspace $F(\Lambda)$. If $\Lambda=T p\left(T \in Z^{+}\right)$, then $F(\Lambda)$ is just one of the chain, thus the explanation is the same as case 2 with $q^{p}=1$. If $\Lambda \neq T p$, and letting $R p<\Lambda<(R+1) p$, we get the following invariant chain

$$
\begin{align*}
& \mathscr{F} \equiv W(0) \supset W(p) \supset W(2 p) \supset \ldots \supset \\
& W(R p) \supset F(\Lambda) \supset W(R p+p) \supset \ldots \tag{27}
\end{align*}
$$

on each of which we have an infinite-dimensional indecomposable representation.
In this case we can obtain a new type of finite-dimensional representations on the quotient spaces $F(P, \Lambda) \equiv W(P p) / F(\Lambda), P \leqslant R$, with basis

$$
\begin{align*}
& \{|\bar{m}\rangle \equiv|m\rangle \bmod F(\Lambda) \mid P p \leqslant m \leqslant \Lambda-1\} \\
& \operatorname{dim} F(P, \Lambda)=\Lambda-P p \tag{28}
\end{align*}
$$

which is irreducible if $P=R$ and indecomposable if $P<R$.

The q-boson realization method can also be used to study the cyclic representations [10]. Now we study the cyclic representation of \mathscr{A}_{1}. On the p-dimensional linear space V_{p} with basis $\left\{v_{k} \mid k=0,1, \ldots, p-1\right\}$ the q-boson algebra has the cyclic representation

$$
\begin{array}{lr}
b^{+} v_{k}=v_{k+1} & k \neq p-1 \\
b^{+} v_{p-1}=\xi v_{0} & \xi \in C^{\times} \\
b v_{k}=[k+\eta] v_{k-1} & k \neq 0, \eta \text { is generic } \tag{29}\\
b v_{0}=\xi^{-1}[\eta] v_{p-1} & \\
q^{ \pm N} v_{k}=q^{ \pm(k+\eta)} v_{k} .
\end{array}
$$

Then, by making use of the q-boson realization (11) of \mathscr{A}_{1}, we obtain the cyclic representation of \mathscr{A}_{1}

$$
\begin{align*}
& \delta v_{k}=v_{k+1} \quad k \neq p-1 \\
& \delta v_{p-1}=\xi v_{0} \quad \xi \in C^{\times} \\
& \beta v_{k}=\left(\lambda+\omega \mu[k+\eta] q^{k+\eta+1}\right) v_{k} \quad \eta \text { is generic } \\
& \gamma v_{k}=\mu q^{2(k+\eta)} v_{k} \tag{30}\\
& \alpha v_{k}=\omega \mu[k+\eta]\left(q^{k+\eta} \lambda+\left(q^{3(k+\eta)-1}-q^{k+\eta} \omega\right) \mu\right) v_{k-1} \quad k \neq 0 \\
& \alpha v_{0}=\xi^{-1} \omega \mu[\eta]\left(q^{\eta} \lambda+\left(q^{3 \eta-1}-q^{\eta} \omega\right) \mu\right) v_{p-1} .
\end{align*}
$$

In this representation the non-generic central elements take the values

$$
\begin{align*}
& \delta^{p}=\xi \quad \gamma^{p}=\mu^{p} \\
& \alpha^{p}=\omega^{p} \mu^{p} \xi^{-1} \Pi_{k=0}^{p-1}[\eta+k] \Pi_{k=0}^{p-1}\left(q^{\eta+k} \lambda+\left(q^{3(\eta+k)-1}-q^{\eta+k} \omega\right) \mu\right) . \tag{31}
\end{align*}
$$

We would like to point out that in the case with $\mu=0$ or in the case with $\mu \neq 0$ but $\lambda=\left(\omega-q^{2(\Lambda+\eta)-1}\right) \mu$ for a $\Lambda \in\{0,1, \ldots, p-1\}$ the representation (30) is only the semi-cyclic representation. It is obvious that in both cases we always have $\alpha^{p}=0$.

So far we have studied the q-boson realization and the representation of quadratic algebra \mathscr{A}_{1}. The key point is the construction of the q-boson realization. In fact, by making use of the comodule property of the quadratic algebras we can also construct q-boson realizations, which are different from the q-boson realizations presented, in this letter, for the case \mathscr{A}_{1}. We will present this approach in a separate paper.

The authors of this letter would like to thank Professor P Kulish and Professor R Sasaki for their lectures on this subject given at XXI DGM in Tianjin, and for giving them the references $[5,6]$. This work is supported in part by the National Natural Science Foundation of China. Author Fu is also supported by the Jilin Provincial Science and Technology Foundation of China.

References

[1] Cherednik I 1984 Theor. Math. Phys. 6155
[2] Reshetikhin N and Semenov-Tian-Shansky M 1990 Lett. Math. Phys. 1913
[3] Sklyanin E 1988 J. Phys. A: Math. Gen. 212375
[4] Kulish P and Sklyanin E 1991 J. Phys. A: Math. Gen. 24 L435
[5] Kulish P and Sklyanin E 1992 J. Phys. A: Math. Gen. 25 5963-75
[6] Kulish P, Sasaki R and Schwiebert C 1992 Constant solutions of reflection equations Preprint YITP/U-92-07
[7] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
Sun C P and Fu H C 1989 J. Phys. A: Math. Gen. 22 L983
[8] Chaichian M and Kulish P 1990 Phys. Lett. 234B 72
Floreanini R and Spiridonov V P 1990 Phys. Lett. 242B 383
[9] Fu H C and Ge M L 1992 J. Phys. A: Math. Gen. 25 L389
[10] Fu H C and Ge N L 1992 J. Math. Phys. 33427

