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LETTER TO THE EDITOR 

q-boson realization of quadratic algebra d,  and its 
representations 

Hong-Chen Fut$ and Mo-Lin G e t  
7 Theoretical Physics Divison, Nankai Institute of Mathematics, Tianjin 300071, 
People’s Republic of China 
i Department of Physics, Northeast Normal University, Changchun 130024, 
People’s Republic of China 

Received 23 September 1992 

Abstract. The non-generic central elements of the quadratic algebra d, associated with 
the quantum group GL(Z), are found in the case where q is a root of unity. A q-boson 
realization of dpp, is constructed. In terms of the q-boson realization the representations of 
d,  on the q-Fock space are studied in both generic and non-generic cases and the cyclic 
representation is obtained in the non-generic case. 

Reflection equations and their related quadratic algebras were introduced in [l]  as an 
equation describing factoring scattering on a half-line. Recently they have found 
different applications, to the quantum current algebras [Z], and to the integrable 
modules with non-periodic boundary conditions [3,4]. Kulish et al studied the proper- 
ties of the quadratic algebras [5] (including some representations) and constructed the 
constant solutions of the reflection equations [6]. 

The q-boson realization theory is a powerful tool for studying the representations 
of quantum algebras [7], quantum superalgebras [SI, and quantum matrix-element 
algebras of the quantum groups [9]. We naturally expect to apply this method to the 
study of the representations of the quadratic algebras. This letter is devoted to the 
q-boson realization of quadratic algebras Sp, (in Kulishs notation) associated with 
GL(2), and its representations. The q-Fock representations both in generic and non- 
generic cases and the cyclic representations in non-generic cases are all considered. 

Throughout this letter the term ‘generic’ means that the deformation parameter q 
is not a root of unity, and ‘non-generic’ means that q is the primitive pth root of unity, 
i.e. q p  = 1, and p 3 3 is an odd positive integer. We denote by Zt the set of all 
non-negative integers and by C the complex number field. We also use the abbreviations 
C“ = C\{O) and [XI = ( q x  - q - x ) / ( q  - q- ’ )  for an operator x or a complex number x. 

Quadratic algebra sP( R )  was specified from the reflection equation without spectral 
parameters 

R K ‘ R ‘ I K ~ =  K ~ R ~ ~ K ~ R  (1) 

where K is a square matrix and K 1 =  K g i d ,  K’=idOK’. Quadratic algebras are 
generated by the non-commuting matrix elements k,  of K. This algebra is closely 
related to the quantum group A(R) generated by the matrix elements t, of T satisfying 

1 2  2 1  
RTT= TTR. 
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It is an A(R)-comodule-algebra, i.e. there exists an algebra homomorphism 'p: d( R) + 

A(R)@d(R)  such that 

(A@id)o'p=(id@'p)o'p (&@id) 0 'p =id  (3) 
where A and E are the comultiplication and the co-unit of A(R) respectively. In fact 
'p is explicitly defined by 

' p ( K ) =  TKT' ( d K ) ) , =  tjmtj.km. (4) "." 
provided [ r,, /r,,,"] = 0. This property implies that, if K is a solution of equation ( ), 
then ' p ( K )  is also a solution. 

In this letter we only study an  explicit example d, associated with quantum group 
GL(2),. In this case 

where o = q - qdl.  Letting 

K =  r a  PI 
L Y  8J 

we get the defining relations of d, 

E., 01 = way a y  = q2Ya [a, s l = 4 q P + Y ) Y  

[P,vl=O [P,  61 = OYS y s  = q28y. 

This algebra has two central elements 

c, = P - 4Y C2 = a8 - q2py. 

For the non-generic case we can also prove the following proposition 

(6) 

Proposition 1. If qp  = 1, then ap, yp ,  8' are all the central elements of d, . 

This proposition can be proved from the defining relations (7) and the following 

We note that, if p is even, then y'" is the central element. is also worth noting 
that p' is not the non-generic central element. For example, when p =3, we find that 

[ a , p ' ] = 3 0 p 2 a r + 3 0 2 p a y 2 + 0 3 a y 3 # 0 .  (10) 

This is explained in greater detail as follows. In quantum algebras, there are two kinds 
of Cartan generators: one kind is Hi ,  having the property [Hi, X,?] = *A,X;; another 
kind is k, = qHf satisfying the relations k X 7  = qbA*JX,?kj. An important difference 
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between the two kinds of Cartan generators is that, in the non-generic case, kp are the 
central elements, while HP are not. From the defining relations ( 7 )  one finds that p is 
HJike and y is k,-like; therefore, y' are the central elements while p' are not. This 
fact can also he seen from the q-boson realization constructed later. 

We now construct the q-boson realization of d, . Define 

S = b +  p = A  + op[ N ] q N + '  
(11) 

where the q-boson operators b f ,  b, q*N satisfy the following well known relations [ 7 ]  

bbt-q"b+b=q" qNbtq-N = qbf  qNbq-N = q-'b. (12) 

One can verify that these operators indeed satisfy the defining relations ( 7 )  of the 
quadratic algebra d,, and therefore equations (11) give a qboson realization of d,. 

One can also verify that, in the q-boson realization ( I l ) ,  the central elements C,, C2 
take the constants 

CI = A  - qp Cz= @(-A +op). (13) 

w ) p ) b  N+IA + ( q l N + 2 -  q N + l  Y = *qZN a = w ( q  

We tum to the representation of the d, on the q-Fock space 9 spanned by 

{lm)=(b+)"lO)lblO)=O, q*NIO)=(0), m E Z + } .  (14) 

From the representations of q-boson algebra on 9 

b + l m ) = l m + l )  

b ( m ) = [ m ] l m  - 1)  (15) 
q*NJm)=q*"lm)  

we obtain the q-Fock representation of d, 
Slm)= Im+ 1 )  

O b ) =  ( ~ + q " + ' [ m l w c ) l m )  

ylm)=pLq2"lm) 

a i m )  = o[m]p(q"A\f(q'"-'-q"o)p)lm - 1 ) .  

Let us analyse this representation in different cases. 

Case 1:  p =O. In this case the representation becomes 

s lm)= J m f l )  

Plm)=Alm) (17)  
ylm)= alm)=O. 

It is easy to see that there exists the following invariant subspace chain 

s = v ( o ) 3 v ( 1 ) ~ v ( 2 ) 3  ... (18) 

V(M): {lm)lm a M ) .  (19) 

It is not difficult to probe that for the subspace V(M+l )  of V ( M )  there exists no 
invariant complementary space. Thus the representation on every V ( M )  is an infinite- 
dimensional indecomposable representation. 

where the invariant subspace V(M), M E  Zt, is spanned by 
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On the quotient space V ( M ,  K )  = V ( M ) /  V(  M + K ) ,  K = 1,2, . . . , one can obtain 
the finite-dimensional representations, which are one-dimensional irreducible rep- 
resentations if K = 1, and K-dimensional indecomposable ones if K 3 2. The one- 
dimensional representation reads 

c r = y = s = o  p = A .  (20) 

Case 2: p # O  and A # (w -9**-’)p for any A E Z + .  In this case it is easy to  prove that 
equation (16) defines an infinite-dimensional irreducible representation in the generic 
case. If 9p = 1 ,  there exists the following invariant subspace chain 

YE- W ( 0 ) 2  W ( p ) 2  W ( 2 p ) 3 . .  . (21) 

~ ( R P ) :  Ilm)lm RP} R € Z +  (22) 

where the invariant subspaces W(Rp) ,  R E Z + ,  are spanned by 

for which no invariant complementary space exists. Therefore the representations on 
9 and on W ( R p )  are all the infinite-dimensional indecomposable representations. 

From the chain (21) we can also construct the finite-dimensional representations 
onthequotientspaces W ( R , S ) -  W ( R ) /  W ( R + S ) , S = 1 , 2 ,  ..., whicharespannedby 

W ( R ,  S): {E= Im) mod W ( R  + S)IRp == m s ( R  + S ) p  - l }  
( 2 3 )  

These finite-dimensional representations are indecomposable in the case Sa 2 and 
irreducible in the case S = 1 .  

Case 3: p # 0 and A = (w -q3”-’)p for given A €2’. We first consider the generic case. 
In this case there exists an invariant subspace F(A)  spanned by 

F(A):  { l m ) l m a A }  (24) 
for which no invariant complementary space exists. Therefore the representation on 
YE is indecomposable. 

dim W (  R, S) = Sp. 

On the quotient space YE/F(A) with basis (m- Im) mod F ( A )  10s m 6 A - 1) 
dim F ( A )  = A  ( 2 5 )  

we obtain a A-dimensional irreducible representation. In particular, when A = 1, we 
obtain the well known one-dimensional representation (up to the constant p )  

01=6=0 p = l  y=-9.  (26) 
Next we discuss the non-generic case. In this case there exists the invariant subspace 

chain (21) and the invariant subspace F ( A ) .  If A =  Tp ( T E  Z + ) ,  then F(A)  is just one 
of the chain, thus the explanation is the same as case 2 with qp = 1. If A # Tp, and 
letting Rp < A  < ( R  + I)p, we get the following invariant chain 

W ( R p )  3 F ( A )  3 W ( R p + p )  2.. . 
9= W(O)> W ( p ) ,  W ( 2 p ) 3  ... 3 

(27) 

on each of which we have an infinite-dimensional indecomposable representation. 

quotient spaces F(P,  A)-  W ( @ ) / F ( A ) ,  P S R ,  with basis 
In this case we can obtain a new type of finite-dimensional representations on the 

{ m = l m ) m o d  F(A)I@S ms A-1) 
dim F(P,  A) = A - Fp (28) 

which is irreducible if P = R and indecomposable if P < R. 
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The q-boson realization method can also be used to study the cyclic representations 
[IO]. Now we study the cyclic representation of SP,. On the p-dimensional linear space 
V, with basis {uklk = 0,1,. . . , p - 1) the q-boson algebra has the cyclic representation 

b+uk = uk+, k # p - 1  

[ E  C" + b up-' = tuo 

bok = [ k + q]uk- ,  k # 0, q is generic (29) 

bvo = C'[ 7 1 up-, 
* ( k + s )  

¶*NUk = q u k .  

Then, by making use of the q-boson realization (11) of SI,, we obtain the cyclic 
representation of d, 

auk = Oh+! k # p - 1  

SU,_, =&Io [E C" 

Buk = ( A  +Wp[k+ q ] q k t n t ' ) u k  q is generic 
2 ( X + 1 )  (30)  

?uk=pq uk 

nuk = ~ p [ k + q ] ( q ~ + ~ A + ( q ~ ' ~ ~ ~ ' - ' -  4 '+? W ) p ) u k - l  

nu, = [ - 'wp[  q](q"A + (q"-' - 4 O ) P ) U p - , .  

In this representation the non-generic central elements take the values 

k # O  

6' = [ y p  = pp 
(31)  

@ P  = " P p P t - 1  ..-I k = a [ q + k ] n ~ ~ b ( ~ ~ ' k A + ( q 3 ' 1 + k ' - ' -  4 ?+' 

We would like to point out that in the case with p = 0 or in the case with p # 0 
but , = ( , - q z ( A t 7 ) - l  ) p  for a A E {0, 1, . . . , p - 1) the representation (30) is only the 
semi-cyclic representation. It is obvious that in both cases we always have np = 0. 

So far we have studied the q-boson realization and the representation of quadratic 
algebra d,. The key point is the construction of the q-boson realization. In fact, by 
making use of the comodule property of the quadratic algebras we can also construct 
q-boson realizations, which are different from the q-boson realizations presented, in 
this letter, for the case SP,. We will present this approach in a separate paper. 

The authors of this letter would like to thank Professor P Kulish and Professor R 
Sasaki for their lectures on this subject given at XXI DGM in Tianjin, and for giving 
them the references [ 5 , 6 ] .  This work is supported in part by the National Natural 
Science Foundation of China. Author Fu is also supported by the Jilin Provincial 
Science and Technology Foundation of China. 
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